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1 Introduction

Cographs were discovered independently by several authors and classified by their P4-freeness [5]. Built from

operations mimicking operations from Boolean algebra, they provide a faithful graph-theoretic representation

of classical propositional formulas. In [3], Dominic Hughes initiated the study of combinatorial proofs by

leveraging this graph-theoretic representation to fully account for classical propositional proofs. There are

now quite a few papers in the area of combinatorial proofs extending Hughes’ system to first-order classical

logic [4], various modal logics [1], and the multiplicative fragment of intuitionistic logic [2].

While combinatorial proof theory is interesting for its own sake, it is also philosophically motivated. With

every combinatorial proof comes the range of sequent calculus proofs that can be used to construct it, and

in this way one can see combinatorial proofs structures as equivalence classes of proofs. By way of equating

proofs of similar structural complexity, combinatorial proof theory constitutes a meaningful contribution to

Hilbert’s 24th problem [9].

A family of logics for which a quantitative approach to proof simplicity would be especially impactful is

that of the bunched implication logics of Peter O’Hearn and David Pym [6]. These logics are widely used to

reason about resource-sensitive software [8], and automating proof simplification in this family could have

applications to software verification [7]. To the author’s knowledge, no combinatorial proof system has been

devised for even the simplest logic in this family, propositional bunched implication logic pBI.

In what follows, a first step towards a combinatorial proof system for pBI is taken. A graph-theoretic rep-

resentation of formulas in MMBI, the so-called magic multiplicative fragment of pBI, is given in section 2.
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The representation given is heavily inspired by those found in the four papers mentioned in the first para-

graph [3], [2], [4], but especially [2]. After the representation is defined, a list of basic properties enjoyed

by MMBI-constructed graphs is recorded in section 3. A structural characterization of MMBI-constructed

formulas appears in section 4. A brief account of how to extend the representation appears in section 5,

with further reconstruction theorems found in ??.

2 Basic Definitions and Notation

The magic multiplicative fragment MMBIof pBI is composed of the expressions generated recursivley by

F ::“ p P P | F ^ F | F ñ F | F ˚ F | F ´̊ F ,

where P is some fixed set of propositional variables. The goal of this document is to represent MMBI-

formulas with so-called p1, 2q-mixed directed acyclic graphs, and to characterise those graphs that represent

MMBI-formulas in structural terms.

Definition 2.1. A mixed dag is a triple pG,",ñq, where " is a symmetric irreflexive relation on G whose

pairs are called undirected edges, and the underlying dag pG,ñq is a directed acyclic graph. Fix a pair of

families of colours Iu, Id with |Iu| “ n and |Id| “ m. An pn,mq-mixed dag is a mixed dag whose undirected

edges have been assigned colours in Iu and directed edges have been assigned colours in Id.

The typical abuse of notation applies: If the pn,mq-mixed structure of a mixed graph pG,",ñq is clear,

reference may only be made to G. Given a set of propositional variables P, an P-labelling of G is simply

an assignment V pGq Ñ P.

Remark. Only the case n “ 1, m “ 2 is necessary for representing MMBI-formulas. However, I conjecture

that a similar reconstruction theorem to that of section 4 is likely within reach for full pBI in the setting

of p2, 2q-mixed graphs, as well as for l-dimensional versions of MMBIand pBI in the setting of pl, lq-mixed

graphs. See section 5 for more details.

Let G be an arbitrary pn,mq-mixed dag, and let v P G. The following are some basic terminological and

notational conventions adopted from here on out.

1. The set of vertices accessible to v is denoted pvñq “ tw | vñwu.

2. The set of vertices n-accessible to v is defined recursively by pvñ0q “ tvu and pvñn`1q “ tw | Dx P

pvñnq.xñwu and

pvñ˚q “

8
ď

n“1

pvñnq.

It is also convenient to define pvñ´1q “ H. Note also that, due to acyclicity, v R pvñ˚q.

3. A modest addition to the previous definition gives the cone of v, defined Conepvq “ tvuY pvñ˚q. The

cones of a given mixed graph often provide an intuitive geometrical representation of its structure.

4. For an induced subgraph Y of G, define pYñq “
Ť

tpyñq | y P Y u, and similarly ConepY q “
Ť

tConepyq | y P Y u.

5. If pvñq “ H, then v is called a root .

6. If wñ v for no w P G, then v is called a leaf .

7. The set of roots of G is denoted
?
G.
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8. The set of nth roots of G is defined inductively by

n
?
G “

d

G´
ď

0ăkăn

k
?
G.

These provide a somewhat generative picture for G that will become useful in the characterization

process in section 3.

9. The graph G is root connected if for any two v, w P
?
G there is a cone Conepaq containing both v and

w.

10. The depth depthpvq, when it is well-defined, denotes the largest n for which there is a path vñ x1 ñ

¨ ¨ ¨ñ xn such that xn is a root.

For p1, 2q-mixed dags, only the colour blue is used for undirected edges, and black and pink are used for

directed edges. The following notation is used.

V pGq “ G

"pGq “"pGq

ñpGq “ (directed edges of G coloured black)

ñpGq “ (directed edges of G coloured pink)

This also gives " and ñ interpretations as binary relations.

The graph operations relevant to MMBIare defined as follows. Let H and K be arbitrary p1, 2q-mixed dags.

• The disjoint union, or sum, G “ H \K of H and K is defined by

V pGq “ V pHq \ V pKq

ñpGq “ñpHq \ñpKq

ñpGq “ñpHq \ñpKq

"pGq “"pHq \"pKq.

• The connect G “ H ||K of H and K is defined by

V pGq “ V pHq \ V pKq

ñpGq “ñpHq \ñpKq

ñpGq “ñpHq \ñpKq

"pGq “"pHq \"pKq \ tv" w | v P H and w P Ku.

• The subjunction G “ H §K of H and K is defined by

V pGq “ V pHq \ V pKq

ñpGq “ñpHq \ñpKq \ tvñ w | v P
?
H and w P

?
Ku

ñpGq “ñpHq \ñpKq

"pGq “"pHq \"pKq \ tv" w | v P H and w P Ku.

• The (magic-)connected subjunction G “ H |§K of H and K is defined by

V pGq “ V pHq \ V pKq

ñpGq “ñpHq \ñpKq

ñpGq “ñpHq \ñpKq \ tvñ w | v P
?
H and w P

?
Ku

"pGq “"pHq \"pKq \ tv" w | v P H and w P K ´
?
Ku.
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In each case, if H and K are P-labelled, then the P-labelling of H ˝K is the sum of the two P-labellings,

where ˝ is any of the operations listed above.

Given a propositional variable p, define

G ppq “ ptvppqu,H,H,Hq,

where the parenthetical superscript denotes the A-labelling. Then, given two MMBI-formulas ϕ and ψ,

G pϕ^ ψq “ G pϕq \ G pψq

G pϕñ ψq “ G pϕq § G pψq

G pϕ ˚ ψq “ G pϕq || G pψq

G pϕ ´̊ ψq “ G pϕq |§ G pψq.

A P-labelled p1, 2q-mixed dag G is called MMBI-constructed if there is an MMBIformula ϕ for which G pϕq “

G. An unlabelled p1, 2q-mixed dag is called MMBI-constructed if it admits a P-labelling for which it is

MMBI-constructed.

In MMBI, there are some canonical equivalences between formulas that should be reflected in the construction

of our graphs. In particular, the ˚ and ^ operators of bunched implication logic are interpeted category-

theoretically as parallel symmetric monoidal structures. With this in mind, define the following congruence

relation „ generated by the pairs

ϕ^ ψ „ ψ ^ ϕ,

ϕ ˚ ψ „ ψ ˚ ϕ,

pϕ^ ψq ^ χ „ ϕ^ pψ ^ χq,

pϕ ˚ ψq ˚ χ „ ϕ ˚ pψ ˚ χq,

pϕ^ ψq ñ χ „ ϕñ pψ ñ χq,

pϕ ˚ ψq ´̊ χ „ ϕ ´̊ pψ ´̊ χq,

so that „ is an equivalence relation satisfying

ϕ^ ψ „ χ^ η

ϕ ˚ ψ „ χ ˚ η

ϕñ ψ „ χñ η

ϕ ´̊ ψ „ χ ´̊ η

when ϕ „ χ and ψ „ η. Let „G be the equivalence relation defined so that ϕ „G ψ iff G pϕq “ G pψq. If G

is to respect the category-theoretic interpretation of ˚ and ^, the identity „G“„ should hold. Left-to-right

inclusion is shown in the next section, but right-to-left inclusion won’t appear until section 4.

The reader might wonder whether G was designed specifically to satisfy the equality „“„G , and indeed

that is correct. The function G is a marrying of the graph-constructors used in [2] and [3], the first of was

designed to respect the closed interpretation of ^ in multiplicative linear logic, and the other to respect the

cartesian structure of ^ in classical logic.

3 Basic Properties of MMBI- Generated Graphs

What follows is a string of lemmas that will be useful in the characterization of MMBI-constructed p1, 2q-

mixed dags. The explicit P-labelling of a given graph will often elude explicit exposition in what follows,

mostly because it will not play a significant role.
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Lemma 3.1. „Ď„G

Proof. It suffices to check that \, ||, §, |§ satisfy the equations generating „. It is easily checked that \ and

|| are commutative and associative, as well as the identity

pH \Kq § L “ H § pK § Lq.

To see that the analogous identity holds for || and |§, it suffices to stare at the following picture for a moment

or two.

See corollary 4.16 for the converse.

For the rest of this section, fix a MMBI-constructed p1, 2q-mixed dag G.

Lemma 3.2. The underlying dag of G is both L-free and Σ-free, meaning that none of its induced

subgraphs are of either of the forms below.

x

y

z

x

y

z

w

x

y

z

w

u

The first two graphs are L-shaped graphs, and the third graph is a Σ-shaped graph.

Proof. This is more a result about pure dags than about mixed dags, of course. See [2] for details.

Lemma 3.3. Consider the underlying dag pG,ñq of G, and define the simple graph G˚ by setting

V pG˚q “ G,

" pG˚q “ tv " w | pvñ wq _ pwñ vqu.

Then G˚ is connected if and only if G is root connected.

Proof. It is clear that if G is root connected, then G˚ is connected. Going in the other direction, suppose

G is not root connected and let v, w P
?
G such that v, w P Conepaq for no a P G. I will aim to show that

there is no path v " x1 " ¨ ¨ ¨ " xn “ w. We proceed by induction on n. If v " w, then either vñ w or

wñ v, contradicting v, w P
?
G. Now suppose there is no path of length n between v and w, but that

x0 “ v " x1 " ¨ ¨ ¨" xn`1 “ w
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for some x1, . . . , xn. Let m be the least index at which xm ñ xm`1. Since v, w are roots, 0 ă m ď n. By

L-freeness, xm`1 ñ xm´1, making

v " x1 " ¨ ¨ ¨" xm´1 " xm`1 " ¨ ¨ ¨w

a path of length n. By the induction hypothesis, no such path can exist. Hence, no path exists between v

and w, putting v and w in different connected components of G˚.

Lemma 3.4. G is N -free, meaning that it is free of induced subgraphs of the form

x

y

z

w

Proof. By induction on the construction of G. Let the N -shaped graph appear as a subgraph of G “ H ||K,

and assume H and K are N -free MMBI-constructed graphs. There are two possible ways x, y, w, z could be

partitioned into H and K:

• In the first, one of the four vertices is in one of H or K, and the remaining three are in the other. Given

this partition, however, one of x, y, z, w enjoys full edge connections with the other three vertices.

• In the second possibility, two of the vertices are in one set, and the remaining two are in the other.

Given this partition, two of the vertices enjoy full edge connections with the other two.

In either case, this N -shaped graph does not appear as an induced subgraph of G.

Noteworthy in the above lemma is the lack of directed edges in an N -shaped graph: This lemma does not

ensure that pG,"q is an N -free graph. What it does tell us is that the roots of a MMBI-constructed graph

induce an N -free graph, and more generally that any subgraph without directed edges must be N -free as

well. lemma 3.6 states precisely this observation below.

Lemma 3.5. G has full web connections, meaning that if H and K are root connected components of

G´ n
?
G, either H and K share no edges in pG,"q or they enjoy full edge connections in pG,"q.

Proof. By induction on the construction of G. Clearly G ppq has full web connections. So, assume H and K

are MMBI-constructed graphs with full web connections, and consider the following possibilities.

1. If G “ H \K, then H and K share no " edges at all. Since H and K have full web connections, G

has full web connections.

2. If G “ H || K, then H and K enjoy full " connections. This means that every root connected

component of H ´ n
?
H enjoys full " connections with every root connected component of K ´ n

?
K.

This gives G full web connections.

3. Suppose G “ H §K. We have

G´
?
G “ H \ pK ´

?
Kq,

and H and K ´
?
K have full web connections. This implies G´

?
G has full web connections. Since

G is root connected, G has full web connections.

4. Suppose G “ H |§K. We have

G´
?
G “ H || pK ´

?
Kq,

and H and K´
?
K have full web connections. This implies G´

?
G has full web connections. Again,

G is root connected, so G has full web connections.
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Lemma 3.6. The set of weakly connected components of G´ n
?
G form an N -free simple graph,

V pKnpGqq “ tH | H is a weakly connected component of G´
n
?
Gu

"pKnpGqq “ tH "H 1 | pDv P HqpDw P H 1qv" w in Gu,

for any n.

Proof. Suppose there are distinct root connected components Hi of G´ n
?
G such that H1"H2"H3"H4

appears in KnpGq. By lemma 3.5, there are vertices vi P Hi such that v1 " v2 " v3 " v4 in G. However,

since the vi are in distinct Hi, there are no directed edges of the form vi ñ vj in G. Since G is N -free, we

must have vi " vj , and therefore Hi "Hj , for some i, j “ 1, . . . , 4.

In particular, define KpGq “ K0pGq to be the simple graph built from the weakly connected components of

G.

Lemma 3.7. G is split-variation-free, meaning that no vertex of G is both the source of a normal edge

and a magic edge.

Proof. Again by induction on the construction of G. Let H and K be split-variation-free MMBI-constructed

graphs and suppose x is a root of H. If G “ H §K, then xñ y for any y P
?
K, and there are no other

directed edges with source x. Since H and K are split-variation-free, and every edge in G that is neither in

H nor K is of this form, G is split-variation-free. The case for G “ H |§K case is similar.

Lemma 3.8. G is join-variation-free, where a join-variation is an induced subgraph of one of the forms

x

y z

w

x

y z

w

Proof. By induction on the complexity of G. Assume H and K are join-variation-free MMBI-constructed

graphs, and suppose either G “ H §K or G “ H |§K. Suppose further that the above join-variation appears

as a subgraph of G, and assume without loss of generality that x P H. If y and z are in K, they are by

assumption non-roots, so y and z must be in H as well. Now, if G “ H § K and w P K, then z ñ w,

contradicting our assumption that zñw in G. This puts w P H, which contradicts our assumption that H

is join-variation-free. A similar argument applies to the case in which G “ H |§K.

Lemma 3.9. G is free of dangling roots, where a dangling root is an induced subgraph of G of the form

x

y r

where r is a root in G.

Proof. Again, by induction on the complexity of G. Assume H and K are MMBI-constructed graphs that

are free of dangling roots. Suppose G “ H ||K, and that the above appears as a subgraph of G. If either x

or z appears in H or K, then they must both appear in H or K respectively. Thusly, the only interesting

scenario to consider is the one in which x, y P H and r P K. In such a case, x" r and the above graph does

not appear as an induced subgraph of G.

Next, suppose G “ H § K or G “ H |§ K. The only interesting scenario to consider, here, is the one in

which x P H and y, r P K. However, since r is a root, xñ r in G.
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Lemma 3.10. G is ladder-free, where a ladder is an edge v" w such that w P Conepvq.

Proof. Let vñ v1 ñ ¨ ¨ ¨ñ vn ñw be a path in G. That there is no edge v"w follows by induction on the

construction of G. Suppose the lemma holds for MMBI-constructed graphs H and K, and that G “ H §K

or G “ H |§K. We can safely assume w P K. Since there is at most one edge between any two vertices,

n ą 0. We can assume vn P H, for vi P K implies vi´1 P K for all i since no vi is a root of K. However, if

w is a root of K and w" v in G, then v P K as well. This implies that vi P K for all i.

Lemma 3.11. G is free of trailing roots, where a trailing root is an induced subgraph of the form

x

...

r s

with r and s roots of G.

Proof. By induction on the construction of G. Let H and K be MMBI-constructed graphs free of trailing

roots, and assume that the above graph appears in G. If G “ H || K, the only interesting possibility to

consider is that the path xñ˚ r is in one of H,K, and s is in the other. In this case, however, there is an

edge s" r.

Next, suppose G “ H §K or G “ H |§K. In either case, the interesting possibility to consider is the one in

which an initial segment of the path xñ ¨ ¨ ¨ñ r appears in H and r P K. In this case, because s is a root,

we must have s P H as well, but this would put sñ r in G.

Lemma 3.12. G is box-free, where a box-shaped graph is an induced subgraph of G of any of the forms

x

y w

z x

y w

z x

y w

z

piq piiq piiiq

Proof. By induction on the complexity of G. Assume H and K are box-free, and that any of the above

graphs appear as a subgraph of G. If G “ H ||K, the only interesting case to consider is the one in which

x, y P H and z, w P K (or vice versa). In this case, there is an edge x" w in G.

Suppose G “ H §K or G “ H |§K. If x, z P H and y, w P K, then every vertex is a root and there is an

edge xñ w in G.

There is one interesting case remaining: x P H and z, w, y P K. Note that here, y is a root and w is not. In

(i) and (iii), if there are no additional edges, the subgraph of K induced by y, w, and z is a dangling root of

G. Since G is MMBI-constructed, this contradicts the previous lemma. In (ii), since x" z, it must be the

case that G “ H |§K. However, since w is not a root, there must also be an edge x" w.

Lemma 3.13. G is �-free, where a �-shaped graph is a graph of the form

x

z w

y

Proof. By induction on the complexity of G. Assume H and K are �-free, and that the above graph appears

as a subgraph of G. If G “ H ||K, the only interesting case to consider is the one in which x, y P H and

z, w P K (or vice versa). In this case, there is an edge x" w in G.
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Now suppose that G “ H §K or G “ H |§K. There are three cases to consider.

1. If y P H and x, z, w P K, then z is a root and y, z, w form a dangling root in K.

2. If x, y P H and z, w P K, then xñ w.

3. Suppose x P H and y, z, w P K. If G “ H §K, then there is no edge x" y. If G “ H |§K, then since

w is not a root, x" w.

In any case, the above graph does not appear as an induced subgraph of G.

Lemma 3.14. G is free of dangling sources, where a vertex x is a dangling source if it appears as an

induced subgraph of one of the forms

x y

z w

x y

z w

x y

z w

piq piiq piiiq

Proof. By induction on the complexity of G. Let H and K be MMBI-constructed graphs free of dangling

sources, and suppose G is either H § K or H |§ K and that (i),(ii), or (iii) appears in G. If x P H and

y, z, w P K, then since z is a root and w is not, y, z, w, and any v P pwñq induce an L-shaped graph in K.

Now suppose x, y P H and z, w P K. This makes both z and w roots of K, putting xñ w in G.

Finally, assume y P H and the rest of the vertices are in K. In this case, z, w are roots. For the graph (i),

the interesting case is G “ H |§K. In this scenario, y" x in G. In the graph (ii), if G “ H §K, then a

dangling root is induced by x, z, w in K. If G “ H |§ K instead, then y " x in G. Finally, consider the

graph (iii). If G “ H |§K or G “ H §K, then x, z, w form a trailing root in K.

Lemma 3.15. G is slice-variation-free, where a slice-variation is an induced subgraph of the form

x

y z

w

Proof. Again, by induction on the complexity of G. Suppose H and K are MMBI-constructed slice-variation-

free graphs, and suppose G “ H §K or G “ H |§K, and assume that w P K. If z P H, then so are x and

y. So, suppose z, w P K. If G “ H §K, then x, y P K since they are connected to K via non-ñ edges. If

G “ H |§K, then y P K and either x" y or x P K.

Lemma 3.16. G is wing-free, where a wing is an induced subgraph of the form

x

y z

w

Proof. By induction on the complexity of G. Suppose H and K are MMBI-constructed wing-free graphs,

and suppose G “ H §K or G “ H |§K and that the above graph appears as a subgraph of G. As in the

proof of the previous lemma, it is safe to assume w P K. There are several possibilities to consider.
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1. If z P H, then either y P K and z" y, or yñ w.

2. If x P H, then either z P K and x" z, or z P H.

3. if y P H, then either x P H and xñ w, or x P K and there is no edge x" y.

In any case, the above graph does not appear as an induced subgraph of G.

Lemma 3.17. G is trestle-free, where a trestle is an induced subgraph of one of the forms

x y

z w

x y

z w

x y

z w

x y

z w

piq piiq piiiq pivq

Proof. By induction on the complexity of G. Let H and K be MMBI-constructed trestle-free graphs, and

assume G is one of H §K,H |§K. Suppose on of (i)-(iv) appears in G. There are several possibilities to

consider.

1. If x P H and z, y, w P K, then z is a root of K and w is not. The vertices y, z, w, v induce an L-shaped

graph in K, for any v P pwñq.

2. In (i)-(iii), if y P H and x, y, w P K, then there mustn’t be an edge x" y. In (iv), x, z, w induce a

dangling root in K.

3. If x, y P H and z, w P H, then xñ w in G.

The following is a reproduction of the the key lemma from [2] needed to characterise arenas by L-freeness

and Σ-freeness.

Proposition 3.18. Let G “ pG,ñq be any dag.

(i) If G is L-free, then G is stratified. That is, if vñ w, then depthpvq “ depthpwq ` 1.

(ii) If G is L-free, then the cones of G are full. That is, if vñn w and vñn`1 z in G, then wñ z.

(iii) If G is L-free and Σ-free, then vñny and wñmy implies either pvñnq Ď pwñmq or pwñmq Ď pvñnq.

In the more colourful setting of p1, 2q-mixed dags, more can be said regarding (i) and (ii).

Lemma 3.19. In a p1, 2q-mixed dag G that is L-free and Σ-free, split-variation-free, and join-variation-free,

both of the following hold.

(i) If vñn w and vñn xñ z, then wñ z.

(ii) If vñn w and vñn xñ z, then wñ z.

This essentially means that the levelsets of a cone are monochromatic.

Proof. The case n “ 0 is trivial. Suppose that we are in situation (i), that for some n ą 0 we find vñn w

and vñnxñz in G. By the previous proposition, cones are full in G. This puts wñz in G, whose colour is

to be determined, as well as uñw, uñx for some u P pvñn´1q. This forces wñz by the join-variation-free

property of MMBI-constructed dags. A similar argument applies to the case of situation (ii).
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4 The First Reconstruction Theorem

In this section, „G -equivalence classes of MMBI-formulas are recovered from their MMBI-constructed graphs.

The basic outline of how to recover ϕ from G pϕq is an associated simple graph called its blueprint. To see

ow these are used, a short detour is in order.

Blueprints

In [2], formulas are recovered from their respective prearenas using mainly part (ii) of proposition 3.18.

This property implies that if a prearena G is root connected, then there is a leaf v P G whose cone Conepvq

contains all of the roots of G (such a cone is said to be maximal). Where n “ depthpvq, let H be the

subgraph of G induced by the set of vertices

Y “ tw | Conepwq X pvñn´1q ‰ Hu,

and let K be the rest of G. Then, simply, G “ H §K.

Of course, while the underlying dags of BI-constructed graphs are prearenas, there could be many distinct

sets of “pre-roots” Y1, . . . , Yn, giving distinct “antecedent graphs” H1, . . . ,Hm. Moreover, these graphs could

be connected to the “consequent graph” K “ G ´ pH1 ` ¨ ¨ ¨ ` Hmq with a variety of differently coloured

arrows, and could be interconnected by webs of undirected edges. While this makes recovering a formula

from a BI-constructed graph more complicated, there is a simple way to organize the relevant information.

Let G be a p1, 2q-mixed graph such that

(a) G is root connected,

(b) G is L-free and Σ-free,

(c) G is split-variation-free and join-variation-free, and

(d) G has full web connections.

Then G admits at least one maximal cone Conepvq containing all of the roots of G. For any u, let

Yu “ tw | Conepwq X puñdepthpuq´1q ‰ Hu,

and denote by Y1, . . . , Ym the distinct Yu in G for which Conepuq is a maximal cone containing the roots

of G. For each i, let Hi be the component subgraph of G induced by Yi, and K be the remainder graph,

G´ pH1` ¨ ¨ ¨ `Hmq. By (c), each Hi is connected to K with at most one colour of arrow, and label the Hi

accordingly: If Hi is connected to K with magic arrows, write H‚i , and write H‚i otherwise.

Definition 4.1. The blueprint BpGq of G is the decorated simple graph defined as follows:

V pBpGqq “ tH˝i | i “ 1 . . .mu Y tK | Kz
?
G ‰ Hu

EpBpGqq “ tX " Y | Dv P X.Dw P Y.v" w P Gu.

The restricted blueprint is defined B˚pGq “ BpGq ´K.

Note that the colour labelling of each vertex is included in the definition, that K is the only uncoloured

vertex, and that K is only present as a vertex if K contains some non-root of G. Note also that B˚pGq ‰ H
if and only if G has positive depth (ie. G has more than one vertex, since G is root connected).

The first property that BpGq inherets from G is N -freeness.
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Lemma 4.2. If G is N -free, then B˚pGq is N -free.

Proof. See lemma 3.6. Essentially, B˚pGq is a subgraph of K1pGq.

Definition 4.3. For any subgraph D of the blueprint BpGq with vertices tH˝i | i P Iu such that G satisfies

(a)-(d), define

rDs “
ÿ

tH˝i | Hi P V pDqu

as a subgraph of G.

Simply put, rDs is the subgraph of G induced by the vertices in the components H˝i of G appearing in D.

In particular, of course, G “ rBpGqs `K.

The following is a useful inductive device used in the reconstruction theorem to follow. It essentially digs

out the “absolute consequent” of an MMBI-formula.

Definition 4.4. Let ϕ be any propositional formula of MMBI. The remainder kpϕq of ϕ is defined as

follows: If ϕ “ ψ ñ χ or ϕ “ ψ ´̊ χ, then kpϕq “ kpχq. Otherwise, kpϕq “ ϕ.

For example, kppñ pa^ qqq “ a^ q, and

kpa ´̊ pbñ pc ´̊ pdñ eqqqq “ e.

The following lemma reveals that the remainders are invariant under G . An important concept used in its

proof is that of the remainder depth dkpϕq of an MMBI-formula ϕ. It is defined recursively as follows: If

ϕ P tp, ψ ^ χ, ψ ˚ χu, then dkpϕq “ 0. Otherwise, if ϕ “ ψ ñ χ or ϕ “ ψ ´̊ χ, then dkpϕq “ dkpχq ` 1.

Lemma 4.5. Let G “ G pϕq for some formula ϕ, and denote the remainder graph of G, G´
ř

iHi, by K.

Then

G pkpϕqq “ K.

Proof. We proceed by induction on the remainder depth of ϕ. If ϕ “ p, then K “ G because BpGq has no

components (see the definition). If ϕ “ ψ ˚ χ or ϕ “ ψ ^ χ, then kpϕq “ ϕ. In such a case, there are no

component graphs in the blueprint of G, because a BI-constructed graph has a cone that contains its roots

if and only if it is not of one of the forms G pψ ˚ χq or G pψ ^ χq. Whence, K “ G pϕq “ G.

Instead, assume ϕ “ ψ ñ χ or ϕ “ ψ ´̊ χ. Since kpϕq “ kpχq, it suffices to show that K “ kpχq. This

follows from the observation that every root of the induced subgraph G pψq is connected to every root of G,

and therefore must be contained in the (union of the) component graphs of G.

Structural Characteristics of Blueprints

It is now time to use the results of the previous section to study the structural properties of BpGq.

Lemma 4.6. If G satisfies conditions (a)-(d) of section 4, and is additionally slice-variation-free, then

B˚pGq is free of the following induced subgraph

‚

‚ ‚

This graph will also be referred to as a slice-variation in BpGq.
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Proof. Suppose H‚1 "H‚2 "H‚3 appears in BpGq. By full web connectedness of G, there are vertices vi P Hi

such that v1 " v2 " v3 in G. However, given some root r of K, v1 ñ r while v2 ñ r and v3 ñ r. Whence,

v1, v2, v3, r induce a slice-variation in G.

This basically means that, if D is a connected component of the normal slice of BpGq and H‚i is a magic

component of G such that H‚i "H‚j for some H‚i P D, then

@H‚j P D.H
‚
i "H‚j .

A little more can be said in this direction.

Lemma 4.7. If G satisfies (a)-(d) of section 4, and is additionally wing-free, then B˚pGq is free of the

following induced subgraph.

‚

‚ ‚

This graph will also be referred to as a wing in BpGq.

Proof. Similar to lemma 4.6, but with wings instead of slice-variations.

This means that there is at most one connected component of B˚pGq that contains both normal and magic

components of G. Combining lemma 4.6 and lemma 4.7, if G satisfies (a)-(d) and G is slice-variation-free

and wing-free, B˚pGq is of the form

D1 \ ¨ ¨ ¨ \Dn \ E

where each Di is a connected component of normal vertices, and E is a connected graph of either just magic

vertices, or of both normal and magic vertices. Together with the following lemma, this observation leads

to a limited structural characterisation of MMBI-constructed graphs.

Lemma 4.8. Assume G satisfies (a)-(d) of section 4, is slice-variation-free and wing-free, and that K ´
?
G ‰ H. If, in addition, G is trestle-free and free of dangling sources, then BpGq is free of the following

two subgraphs.

‚

K

‚

K

piq piiq

Proof. Let p P K ´
?
G be a vertex of depth 1, with pñ s and s P

?
G. Since p is in the remainder of G,

there is a root r P
?
G´ Coneppq.

To see that the graph (i) cannot appear in BpGq, simply observe that such a normal component of G would

imply there being a vertex q, two normal edges qñ s and qñ r, and an edge p" q in G. In other words,

p, q, r, s induce a subgraph of one of the following forms.

p q

rs

p q

rs

p q

rs

p q

rs

In other words, the vertices p, q, s, r form a trestle.

To see that (ii) cannot appear in G, observe that the presence of such a magic component would imply there

being a vertex q, two edges qñ s and qñ r. Thus, p, q, r, s induce one of the following subgraphs of G.

p q

rs

p q

rs

p q

rs

p q

rs
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In other words, p, q, r, s induce a dangling source in G.

The lemma essentially says that introducing the vertex K into the blueprint BpGq of G is superfluous. In

other words, B˚ and B carry the same information for MMBI-constructed graphs. The following proposition

provides a somewhat restricted characterization of MMBI-constructed graphs.

Proposition 4.9. Suppose G satisfies (a)-(d) of section 4, is slice-variation-free and wing-free, is trestle-

free and free of dangling sources, and is ladder-free as well. then

B˚pGq “ D1 \ ¨ ¨ ¨ \Dn \ E,

where each Di is a connected component of normal vertices, and E is a connected component of either

just magic vertices, or of both normal and magic vertices. If E contains only magic edges, there are two

possibilities:

(i) If E is empty, then

G “ prD1s \ ¨ ¨ ¨ \ rDnsq §K.

(ii) If E consists of only magic vertices, then

G “ prD1s \ ¨ ¨ ¨ \ rDnsq § prEs |§Kq.

Proof. The first part of the proposition follows from lemma 4.6 and lemma 4.7. The second part of the

proposition is slightly trickier, as there is no reason a priori to believe that all of the " edges in G are

created in either the construction in (i) or the construction in (ii). The vertices are, on the other hand, all

created, as

G “ rD1s ` ¨ ¨ ¨ ` rDns ` rEs `K.

It follows from ladder-freeness that there are no " edges between vertices of any rDis and K, or between

vertices of rEs and K. Hence, the only " edges in G that are not induced by roots of G occur either between

two vertices in some rDis, between two vertices in rEs, between two vertices in K, or between some vertex

of rEs and some vertex of K ´
?
K. These are precisely the " edges created in the construction of

prD1s \ ¨ ¨ ¨ \ rDnsq § prEs |§Kq.

This ends the proof.

Define, for the sake of brevity,

D “ D1 \ ¨ ¨ ¨ \Dn.

The above picture of MMBI-constructed graphs is simple, but it makes a hefty assumption about the

structure of E. A more careful analysis of the structure of E is needed when E consists of both normal and

magic components.

Lemma 4.10. With the same assumptions on G and the same representation of B˚pGq as in proposition 4.9,

assume S,M ‰ H, and let S be the normal slice of E and M be the magic slice of E. The following

statements hold.

(a) There is a nonempty subgraph M 1 ĎM such that p" v for any p PM 1 and any v P E ´M 1.

(b) There are M1, . . . ,Mm ĎM and S1, . . . , Sm Ď S such that either

rEs `K “ rM1s |§ prS1s § p¨ ¨ ¨ prMms |§ prSms §Kqq ¨ ¨ ¨ qq

or

rEs `K “ rM1s |§ prS1s § p¨ ¨ ¨ prSm´1s |§ prMms |§Kqq ¨ ¨ ¨ qq

if Sm “ H.
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(c) The graph G is of one of the following forms.

Form # H “... Form of G

I none rDs § prM1s |§ prS1s § p¨ ¨ ¨ prMms |§ prSms §Kqq ¨ ¨ ¨ qqq

II D rM1s |§ prS1s § p¨ ¨ ¨ prMms |§ prSms §Kqq ¨ ¨ ¨ qq

III D,Sm rM1s |§ prS1s § p¨ ¨ ¨ prSm´1s § prMms |§Kqq ¨ ¨ ¨ qq

IV Sm rDs § prM1s |§ prS1s § p¨ ¨ ¨ prSm´1s § prMms |§Kqq ¨ ¨ ¨ qqq

V Mi, Si rDs §K

VI D,E a single vertex/not root connected

Proof of (a). This will be done in two parts: First, it will be shown that the set

M1 “ tx PM | @v P S.x" vu

is nonempty, and then it will be shown that M1 satisfies the desired property.

Let S1, . . . , Sm be the connected components of S. The proof proceeds with an induction on m. If m “ 1,

then M “ M1 by lemma 4.6. Now assume there are nonempty subsets M2,M3 Ď M such that M2 enjoys

full edge connections with S1 \ ¨ ¨ ¨ \ Sm and M2 enjoys full edge connections with S2 \ ¨ ¨ ¨ \ Sm`1. Let

v P S1, w P Sm`1, y P M
3 ´M2, and x P M2 ´M3. Since v and w are in separate Si, there is no edge

v " w. However, it must be the case that one of x" w or y " v or x" y, by lemma 4.6. Appealing to

lemma 4.2, however, it must be the case that either x"w or y"v. In the first case, observe that M2 ĎM1,

and in the second, observe that M3 ĎM1. This shows that M1 ‰ H.

To see that M1 satisfies the desired property, let y P E ´M1 and x P M1. If y P S, then by assumption

x" y, so assume y P M ´M1. There is a normal vertex v P S for which there is no edge y" v. However,

x" v. Thus, by lemma 4.7, x" y. This shows that M1 is the desired set M 1 (and, in fact, is the largest

such set).

Proof of (b). Define E0 “ E,

M1 “ tx PM | @v P S.x" vu,

and set E1 “ E´M1. Since slice-variation-freeness, wing-freeness, and N -freeness are hereditary properties,

any induced subgraph of E also has these properties. In particular, the graph E1 has these properties.

Define S1 to be the set of normal vertices in E1 not connected to a magic vertex. The set S1 is nonempty

by construction, since if every vertex in S1 were connected to a magic vertex in E1, E1 would satisfy the

conditions in part (a) and there would be a magic vertex in E1 connected to all of S, contradicting the

assumption that E1 XM1 “ H. So, let E11 “ E1 ´ S1.

Now, if E11 “ H, then E “M1 \ S1 and

rEs `K “ rM1s |§ prS1s §Kq.

Otherwise, proceed inductively.

Define E10 “ H, and

Mi`1 “ tx PM X E1i | @v P S X E
1
i.x" vu

Ei`1 “ E1i ´Mi`1

Si`1 “ tv P S X Ei`1 |  Dx PM X Ei`1.v" xu

E1i`1 “ Ei`1 ´ Si`1.

Remember that E1i “ pMXE1iq\pSXE
1
iq for all i. There is a smallest m such that E1m “ H, for the following

reason: Suppose E1i ‰ H. Since E1i satisfies the conditions on E from part (a), the set Mi`1 is nonempty,
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meaning that either Mi`1 “ E1i or there are normal vertices in Ei`1. In the first case, E1i`1 Ď Ei`1 “ H. In

the second, Si`1 is nonempty and therefore E2i`1 Ĺ Ei`1 Ď E1i. Such an m exists, now, because E is finite.

Computing recursively,

E “ E1 \M1

“ pE11 \ S1q \M1

“ pE2 \M2q \ S1 \M1

“ pE12 \ S2q \M2 \ S1 \M1

...

“ E1m \ Sm \Mm´1 \ ¨ ¨ ¨ \ S1 \M1

“ H\ Sm \Mm´1 \ ¨ ¨ ¨ \ S1 \M1

“ Sm \Mm´1 \ ¨ ¨ ¨ \ S1 \M1.

In the construction above, observe that since E1i satisfies the conditions on E in part (a), Mi`1 satisfies the

property that for any x P Mi`1 and any y P E1i ´Mi`1 “ Ei`1, x" y. Because Sj ,Mj`1 Ď Ei`1 for any

j ě i, Mi has full edge connections with Sj YMj`1 whenever i ď j. Conversely, by construction, if x" y

in rEs, then either

(i) x, y PM ,

(ii) x, y P Si for some i ď m, or

(iii) there are i, j with i ă j ď m such that x PMi and y P Sj .

Points (i) and (ii) are clear possibilities. To see why (iii) is the only remaning possibility, suppose i ă j,

and observe that

Mj Ď E1j XM Ď E1i XM Ď Ei XM.

By definition, Si shares no connections with EiXM , leaving possibility (iii). The second part of the lemma

now follows from ladder-freeness, as in the proof of proposition 4.9(ii).

Proof of (c). Immediate from parts (a), (b), and ladder-freeness, as in the proof of proposition 4.9.

Arenas and their Characterisization

Definition 4.11. A p1, 2q-mixed dag G is a MMBI-arena if G

(a) is L-free and Σ-free (see lemma 3.2),

(b) is N -free (see lemma 4.2) and ladder-free (see lemma 3.10),

(c) is split-variation-free (see lemma 3.7) and join-variation-free (see lemma 3.8),

(d) is slice-variation-free (see lemma 3.15) and wing-free (see lemma 3.16),

(e) is trestle-free (see lemma 3.17) and free of dangling sources (see lemma 3.14),

(f) is box-free (see lemma 3.12) and �-free (see lemma 3.13),

(g) is free of dangling roots (see lemma 3.9) and trailing roots (see lemma 3.11), and

(h) has full web connections (see lemma 3.5).

Lemma 4.12. Let G be a root connected MMBI-arena with components H1, . . . ,Hm and remainder K.

Then H1, . . . ,Hm and K are MMBI-arenas.

Proof. That each Hi and K satisfy (a)-(f) is immediate, as these are hereditary properties. Furthermore, K
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Condition Forbidden graph

L-free, Σ-free
x

y

z

x

y

z

w

x

y

z

w

u

N -free, ladder-free
x

y

z

w

x

...

r

join-variation-free

x

y z

w

x

y z

w

slice-variation-free, wing-free

x

y z

w

x

y z

w

x y

z w

x y

z w

x y

z w

x y

z w

trestle-free, free of dangling sources

x y

z w

x y

z w

x y

z w

box-free, �-free

x

y w

z x

y w

z x

y w

z x

z w

y

free of dangling roots, free of trailing roots

x

y r

x

...

r s

Table 1: Table of graphs forbidden from MMBI-arenas

satisfies (g) because
?
K “

?
G, and every Hi satisfies (h) because root connected components of Hi´

k
?
Hi

are root connected components of G´ pk`1q
?
G.

To see that H is free of trailing roots, let

s" xñ x1 ñ ¨ ¨ ¨ñ xn “ r

be a trailing root in H. Since s is a root of H, there is a root y of G and an edge sñ y. If there are no

additional edges in H, the vertices x, x1, s, y induce a box in G.

To see that the Hi are free of dangling roots, let H “ Hi for some i, and suppose xñ y" z appears in H
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with z a root of H. Since H is root connected, there is a vertex v at depth 1 such that pvñq contains all of

the roots of H. Assuming there is no edge between x and z, there are two possibilities.

1. There is no edge v" x. It is not possible for y P
?
G, as this would make x a dangling source in the

graph induced by x, v, y, z. However, if there is no edge vñ y, x, y, v, z induce a box.

2. There is an edge v" x. Either vñ y or v" y. If vñ y, then x, y, v, z induce a trestle. If v" y, then

x, y, z, w form a �-shaped graph.

This shows that H satisfies (g).

To see that K satisfies (h), first observe that since root connected components of K´
?
K are root connected

components of G ´
?
G, K ´

?
K has full web connections. This leaves the following possibilities: Let K1

and K2 be a pair of root connected components of K. There are a few cases to consider.

1. Suppose there is an edge r1" r2 for some r1 P
?
K1 and r2 P

?
K2. It suffices to show that, if Conepvq

is a cone containing r1 and Conepwq is a cone containing r2, then Conepvq and Conepwq enjoy full web

connections. Towards this end, let yñ˚ r2 and

yñ y1 ñ ¨ ¨ ¨ñ ym ñ r2.

It cannot be the case that there is no edge r1 " ym, for otherwise r1, ym, r2 would induce a dangling

root. A simple induction reveals that r1 " y and r1 " yi for i “ 1, . . . ,m. Similarly, if

xñ x1 ñ ¨ ¨ ¨ñ xn ñ r1,

then x" r2 and xi " r2 for each i “ 1, . . . , n. Moreover, xn " ym, for otherwise xn, r1, r2, ym would

induce a box. Since K ´
?
K has full web connections, x " y and xi " yj for i “ 1, . . . , n and

j “ 1, . . . ,m.

To see that Conepvq" Conepwq, it now suffices to show that r1 " r for any other root r of Conepwq,

and s" r2 for any other root s of Conepvq. By symmetry, only the former requires argument. Since

r and r2 are roots in the same connected component, there is a t P K2 such that tñ r2 and tñ r. By

the previous observation, r1"w. If there is no edge r1" r, then r1, t, r induce dangling roots. Hence,

r1 " r, which concludes this case.

2. Let y P K2 be a non-root, and suppose that r1 " y. Let

yñ y1 ñ ¨ ¨ ¨ñ ym ñ r

be any path from y to a root of K2. If m “ 0, then it must be the case that r1 " r, else r1, r, y form

a trailing root in K. If m ą 0, let k be the largest index for which there is no edge r1 " yk. Again, if

there is no edge r1"r, then r1, yk, yk`1, . . . , ym, r form a trailing root in K. Whence, r1"r, returning

to Case 1.

3. There are non-roots x P K1 and y P K2 such that x"y. It suffices to show that, for some root r1 P K1,

r1 " y. Since K ´
?
K has full web connections, one can assume without loss of generality that x and

y are at depth 1: For some roots r1 P K1 and r2 P K2, xñ r1 and yñ r2. If there are no edges other

than those explicitly mentioned, then x, y, r1, r2 induce a box-shape in G.

This shows that K satisfies (h).

Lemma 4.13. Let G be a MMBI-arena. If D is a root connected component of G, then D is a MMBI-arena.

18



Proof. Since they are hereditary properties, it is clear thatD satisfies (a)-(f). As a root connected component

of D ´ m
?
D is, in particular, a root connected component of G´ pm`nq

?
G, D satisfies (h) by definition. To

see that D is free of dangling or trailing roots, observe that every dangling or trailing root in D is also a

dangling or trailing root in G, because
?
D Ď

?
G.

We are now ready for the main theorem of the whole document.

Theorem 4.14. Let G be a p1, 2q-mixed graph. Then G is a MMBI-arena if and only if G is MMBI-

constructed.

Proof. We have already seen that every MMBI-constructed graph is a MMBI-arena. To see the forward

direction, proceed by induction on the size of G. If |G| “ 1, there is nothing to see. So, assume |G| ą 1, and

letD1, . . . , Dm be the root connected components ofG. Ifm ą 0, each of theDi is a MMBI-constructed p1, 2q-

mixed graph by hypothesis and by lemma 4.13. Furthermore, by lemma 3.6 and the equivalence between

N -free simple graphs and cographs, there is a t˚,^u-formula ϕpD1, . . . , Dmq detailing the construction of

KpGq from the “propositional variables” D1, . . . , Dm. Where Di “ G pψiq, then

G “ G pϕpψ1, . . . , ψmqq.

If m “ 1, a different approach must be taken. Consider the restricted blueprint B˚pGq of G, let H1, . . . ,Hl be

the component vertices in B˚pGq, and let K “ G´
ř

iHi be the remainder of G. Since G is root connected,

there is at least one non-empty component vertex H˝i in the blueprint of G. By lemma 4.10, BpGq is of one

of the forms I-V. Borrow for the time being the notation used in lemma 4.10. Since lemma 4.12 and the

inductive hypothesis state that H1, . . . ,Hl, and K are MMBI-constructed, there are MMBI formulas ψi, θi,

δ, and χ such that

rMis “ G pψiq, rSis “ G pθiq, rDs “ G pδq, and K “ G pχq.

The ψi and θi are constructed from the magic and normal components in E using the fact that rEs is a

disjoint union of MMBI-constructed graphs, and similarly δ is constructed from the components in D.

The hardest case to consider next is when G has form #I. All other form #s are handled similarly. If G has

form #I, let

γG “ δ ñ pψ1 ´̊ pθ1 ñ p¨ ¨ ¨ pψm ´̊ pθm ñ χqq ¨ ¨ ¨ qqq.

Then G “ G pγGq by construction.

The implicit role played by P-labels in the proof of the previous theorem deserves some attention. If a p1, 2q-

mixed dag G comes with a P-labelling, and also happens to be an MMBI-arena, then one can ensure that the

proposition letters appearing in the formulas constructed to represent the various portions of the underlying

graph of G coincide with the P-labels of their corresponding vertices in G. This is simply because there

is no specification of the P-labelling inherent in the graph operations: Simply use any proposition letters

you want during formula construction, then replace them with the labels of their corresponding vertices in

G! The proposition occurrences in γG are in one-to-one correspondence with the vertices in G pγGq. This

observation is also used implicitly in the following theorem.

Theorem 4.15. Let G “ G pϕq be a graph constructed from the MMBI formula ϕ. Define γG to be the

formula described in the proof of theorem 4.14, built to satisfy G “ G pγGq. Then ϕ „ γG

Proof. By induction on the length of ϕ. In the case where ϕ “ p for some propositional variable p,

G “ ptpu,Hq, in which case γG “ p. From now on, η and θ will be MMBI formulas shorter than ϕ, and

H “ G pηq and K “ G pθq.

If ϕ “ η ^ θ or ϕ “ η ˚ θ, G is not root connected. In the proof of theorem 4.14, the graph KpGq is the

simple graph whose vertices are the root connected components of G. Let D1, . . . , Dm be the root connected
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components of H and Dm`1, . . . , Dn be the root connected components of K. If G “ H \K, then

KpGq “ KpGqæpD1, . . . , Dmq \KpGqæpDm`1, . . . , Dnq

is the disjoint union of its subgraphs induced by the vertices representing root connected components of

H and K seperately. Whence, if ϕpD1, . . . , Dnq, ϕ
HpD1, . . . , Dmq, and ϕKpDm`1, . . . , Dnq are the t˚,^u-

formulas detailing the construction of KpGq,KpGqæpD1, . . . , Dmq, and KpGqæpDm`1, . . . , Dnq respectively,

then

γG “ ϕpγD1 , . . . , γDnq “ ϕHpγD1 , . . . , γDmq ^ ϕ
KpγDm`1 , . . . , γDnq.

By the inductive hypothesis,

η „ γH “ ϕHpγD1 , . . . , γDmq and θ „ γK “ ϕKpγDm`1 , . . . , γDnq.

Now, because „ is a congruence relation,

ϕ “ η ^ θ „ γH ^ γK “ γG.

The case in which ϕ “ η ˚ θ is similar.

If ϕ “ η ñ θ or ϕ “ η ´̊ θ, then G is root connected, in which case G has a form #I-#V. We now

perform a subinduction on the remainder depth dkpϕq (see lemma 4.5) of ϕ, beginning with the case in

which dkpϕq “ 1. By lemma 4.5, the remainder K of G satisfies

K “ G pkpϕqq “ G pkpθqq “ G pθq.

This means γK „ θ by the induction hypothesis. Now, since G has remainder depth 1, either G is of form

#III with m “ 1 or #V. In either case,

G pψq “ G pϕq ´ G pθq “ G pϕq ´K “
ÿ

i

rH˝i s,

whereH˝1 , . . . ,H
˝
l are the vertices of B˚pGq. Now, since G ˚pGq isN -free, there is a t˚,^u-formula ΓpH˝1 , . . . ,H

˝
l q

detailing the construction of B˚pGq. It follows from dkpGq “ 1 that either H‚i for all i, or H‚i for all i. Hence,

G pψq “
ÿ

i

rH˝i s “ G pΓpγrH˝1 sq, . . . , γrH˝l sqq.

By the induction hypothesis,

ψ „ ΓpγrH˝1 sq, . . . , γrH˝l sq,

from which it now follows that

ϕ „ ψ ñ θ „ ΓpγrH˝1 sq, . . . , γrH˝l sq ñ γK „ γG

or

ϕ „ ψ ´̊ θ „ ΓpγrH˝1 sq, . . . , γrH˝l sq ´̊ γK „ γG.

This concludes the case where dkpϕq “ 1.

Now assume that the theorem holds for formulas strictly shorter than ϕ, as well as for formulas which are the

same length as ϕ but have a remainder depth strictly smaller than dkpϕq. There are two cases to consider:

• In the first, either ϕ “ ψ ñ pθ1 ñ θ2q or ϕ “ ψ ´̊ pθ1 ´̊ θ2q. Here, either

ϕ „ ϕ1 :“ pψ ^ θ1q ñ θ2

or

ϕ „ ϕ1 :“ pψ ˚ θ1q ´̊ θ2.

In either case, dkpϕ
1q ă dkpϕq. By the subinduction hypothesis, ϕ „ ϕ1 „ γG.
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• In the second case, either ϕ “ ψ ñ pθ1 ´̊ θ2q or ϕ “ ψ ´̊ pθ1 ñ θ2q. If ϕ “ ψ ñ pθ1 ´̊ θ2q, then

G “ G pψq § pG pθ1q |§ G pθ2qq. This makes rDs “ G pψq and rEs `K “ G pθ1q |§ G pθ2q in the notation

of lemma 4.10, since G pψq appears in B˚pGq as the set of normal components disconnected from any

magic vertex. Given the induction hypothesis, it follows that

γG “ γrDs ñ γprEs`Kq „ ψ ñ pθ1 ´̊ θ2q “ ϕ.

Similarly, if ϕ “ ψ ´̊ pθ1 ñ θ2q, then G pψq appears in B˚pGq as the set of magic components connected

to every outside component, normal or magic. This is precisely M1 in the notation of lemma 4.10.

Given the induction hypothesis, it follows that

γG “ γrM1s ´̊ γprEs`Kq „ ψ ´̊ pθ1 ñ θ2q “ ϕ.

This finishes the proof.

Corollary 4.16. „G“„

Proof. We have already seen that „Ď„G in lemma 3.1. To see the reverse inclusion, let G pϕq “ G pψq “ G.

By theorem 4.15,

ϕ „ γG „ ψ.

Hence, ϕ „ ψ.

Of course, the equivalence relation „ encodes an important set of logical equivalences in MMBI. The main

results of this section essentially state that the function G is an example of what I call a graph constructor

for the logic of bunched implications.

Definition 4.17. Given a logic L and a class of decorated graphs G, a graph constructor for L is a function

G : LÑ G such that if G pϕq “ G pψq, then the logical equivalence ϕ ”L ψ holds in L.

5 With More Colours

This section is a work in progress, and ends abruptly when the material ends. I do believe, however, that

the work here can be carried out without too much pain by somebody who cares enough about building

graph constructors for “higher-order” versions of MMBI, and I think pBI is included in this.

The only pBI-connective missing in MMBI-formulas is disjunction, but in fact, a slight modification of GMMBI

produces a graph constructor that includes this connective. Since the same method applies to a more general

class of logics, a general class of graph constructors will be recorded here. Proofs that they do indeed define

graph constructors can be found in the next section.

Remark. While it is true that only a slight modification of the graph constructor GMMBI produces a graph

constructor for full pBI, the reason for the ommission is easily stated: A combinatorial proof system for

multiplicative intuitionistic logic has already appeared in [2], and the graph constructor given coincides with

GMMBI on the additive fragment of MMBI. I hopes that the techniques used in [2] extend to a combinatorial

proof system for MMBI.

Fix a set I of indices, and fix a pair of binary operators bi,(i for each index i P I. Let CCI be the grammar

consisting formulas

A,B ::“ p P P | A_B | Abi B | A(i B pi P Iq.
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I assume that the equivalence relation ”CCI
induces a lax commutative semigroup-closed structure bi,(i

for each i P I. This is to say that the following equations hold

pϕbi ψq bi χ ”CCI
ϕbi pψ bi χq

ϕbi ψ ”CCI
ψ bi ϕ

pϕbi ψq(i χ ”CCI
ϕ(i pψ (i χq.

Let „CCI
denote the equivalence relation generated by these equations alone.

Denote with MDk the class of pk, kq-mixed dags, where k “ |I|. The relevant graph operations designed

to match the connectives of CCI are defined as follows: Let H,K P MDk with the single colour set I

(undirected and directed edges are coloured from the same set), and for each i P I,

H ||i K “ H \K ` tv "i w | v P H and w P Ku

H |§i K “ H \K ` trñi s | r P v P
?
H and w P

?
Ku

where subscripts denote colouring. The relevant mapping on formulas is denoted

G k : CCI ÝÑMDk,

and defined recursively as follows: For any p P P,

V pG kppqq “ tv
ppqu

"i pG kppqq “ H pi P Iq

ñipG kppqq “ H pi P Iq,

and given CCI -formulas ϕ and ψ,

G kpϕ_ ψq “ G kpϕq \ G kpψq

G kpϕbi ψq “ G kpϕq ||i G kpψq pi P Iq

G kpϕ(i ψq “ G kpϕq |§i G kpψq pi P Iq.

A graph is said to be CCI-constructed if it is of the form G kpϕq for some CCI formula ϕ.

5.1 Basic properties of G k

Many of the lemmas recorded in section 3 generalize to G k.

Lemma 5.1. Define the equivalence relation „G k
so that ϕ „G k

ψ if and only if G kpϕq “ G kpψq, for any

CCI-formulas p and ψ. Then „CCI
Ď„G k

.

Proof. Identical to the argument given for lemma 3.1.

It is also immediate that the underlying directed acyclic graph of a CCI -constructed graph is a prearena,

in the sense of [2]. Thus, proposition 3.18 applies. In fact, a more general version of lemma 3.19 applies as

well.

Lemma 5.2. Let G be a CCI-constructed graph. The following statements hold.

1. G is split-variation-free, where a split-variation is a pair of directed edges with the same source but of

different colours.
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2. G is join-variation-free, where a join-variation is an induced subgraph of the form

x

y z

w

i j

in which i ‰ j.

Proposition 5.3. In a pk, kq-mixed dag G that is L-free and Σ-free, split-variation-free, and join-variation-

free, both of the following holds: If vñn w and vñn xñi z, then wñi z.

The proofs are similar to those of lemma 3.19 and lemma 3.8. Together with the addition of the following

lemma, a generalized notion of blueprint for the appropriate subset of MDk can be given.

Lemma 5.4. If G is a CCI-constructed graph, then G has full i-web connections for any i P I. That is,

the root-connected components of G´ n
?
G pairwise enjoy either full "i-connections, or no "i-connections

at all, for any n P N.

Fix, for the time being, a G PMDk such that

(a) the underlying dag of G is root-connected,

(b) the underlying dag of G is L-free and Σ-free,

(c) G is split-variation-free and join-variation-free, and

(d) G has full i-web connections for any i P I.

Again, G admits at least one maximal cone containing
?
G. For any u P V pGq, let

Yu “ tw | Conepwq X puñdepthpuq´1 ‰ Hu,

and let Y1, . . . , Ym be the distinct Yu for which Conepuq is a maximal cone containing
?
G. For each

l “ 1 ¨ ¨ ¨m, let Hl denote the component subgraph of G induced by Yl, and adjoint to it the label H
piq
l if i

is the colour of the directed edges joining Hl to the roots of G. By proposition 5.3, of course, this labelling

is well-defined.

Definition 5.5. The blueprint BpGq of G is the decorated simple graph defined as follows:

V pBpGqq “ tHpilql | l “ 1 . . .mu Y tK | Kz
?
G ‰ Hu

EpBpGqq “ tX "i Y | Dv P X.Dw P Y.v "i w P Gu.

The restricted blueprint is defined B˚pGq “ BpGq ´K.

As before, BpGq has coloured edges, as well as coloured vertices except for the remainder vertex K, which

is only present if there are non-root vertices of K.
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A Examples and Nonexamples of MMBI-arenas

Example A.1. The three-vertex examples are as follows.

ϕ G pϕq ψ G pψq χ G pχq

p^ pq ˚ rq

p
q

r
p ˚ pq ^ rq

p
q

r
p ˚ pq ˚ rq

p
q

r

p^ pq ñ rq

p
q

r
pñ pq ñ rq

p
q

r
ppñ qq ñ r

p
q

r

p^ pq ´̊ rq

p
q

r
p ´̊ pq ´̊ rq

p
q

r
pp ´̊ qq ´̊ r

p
q

r

p ˚ pq ñ rq

p
q

r
p ˚ pq ´̊ rq

p
q

r
q ñ pp ˚ rq

p
q

r

q ´̊ pp ˚ rq

p
q

r
pñ pq ´̊ rq

p
q

r
p ´̊ pq ñ rq

p
q

r

q ñ pp^ rq

p
q

r
q ´̊ pp^ rq

p
q

r
q ^ pp^ rq

p
q

r

Example A.2. Here is one that uses all four connectives nontrivially: The graph for the formula

pp^ qq ´̊ pr ñ ps ˚ tqq

is

p

q r

s t

Example A.3. This one is a classic example of an unintuitive BI constructed graph.

p q

r s

u v

This one comes from pu ˚ vq ´̊ pq ñ ps ˚ pp ´̊ rqqq. Can you find the induced subgraph that isn’t BI

constructed?
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Example A.4. This one has a somewhat nontrivial blueprint.

t

p q

r s

u

v

x

This one comes from the formula

xñ ppu^ vq ´̊ pq ñ ps ˚ ppt ´̊ pq ´̊ rqqqq.

The blueprint of the above BI constructed graph is

K

x‚

u‚

v‚

q‚

where K is the graph

t

p

r s

Note that

K “ G ps ˚ ppt ´̊ pq ´̊ rqq “ G
`

k
`

xñ ppu^ vq ´̊ pq ñ ps ˚ ppt ´̊ pq ´̊ rqqqq
˘˘

.

Taking a look at the blueprint, is it clear why the following graph is not BI constructed?

t

p q

r s

u

v

x

Hint: The blueprint for the above graph is

K

x‚

u‚

v‚

q‚
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How about this one?
t

p q

r s

u

v

x c

Its blueprint is

K

x‚

c‚ u‚

v‚

q‚

The next example is an important one, showing that proposition 4.9 is not enough.

Example A.5. Consider ϕ “ x ´̊ py ñ pz ´̊ pw ñ kqqq. The graph G pϕq is

x

y

z

w

k

The blueprint of G pϕq can be seen as G pϕq ´ k. In the notation of lemma 4.10, M1 “ txu, S1 “ tyu,

M2 “ tzu, and S2 “ twu.
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